Reference: Kent NA, et al. (2004) Cbf1p is required for chromatin remodeling at promoter-proximal CACGTG motifs in yeast. J Biol Chem 279(26):27116-23

Reference Help

Abstract


Cbf1p is a basic-helix-loop-helix-zipper protein of Saccharomyces cerevisiae required for the function of centromeres and MET gene promoters, where it binds DNA via the consensus core motif CACRTG (R = A or G). At MET genes Cbf1p appears to function in both activator recruitment and chromatin-remodeling. Cbf1p has been implicated in the regulation of other genes, and CACRTG motifs are common in potential gene regulatory DNA. A recent genome-wide location analysis showed that the majority of intergenic CACGTG palindromes are bound by Cbf1p. Here we tested whether all potential Cbf1p binding motifs in the yeast genome are likely to be bound by Cbf1p using chromatin immunoprecipitation. We also tested which of the motifs are actually functional by assaying for Cbf1p-dependent chromatin remodeling. We show that Cbf1p binding and activity is restricted to palindromic CACGTG motifs in promoter-proximal regions. Cbf1p does not function through CACGTG motifs that occur in promoter-distal locations within coding regions nor where CACATG motifs occur alone except at centromeres. Cbf1p can be made to function at promoter-distal CACGTG motifs by overexpression, suggesting that the concentration of Cbf1p is normally limiting for binding and is biased to gene regulatory DNA by interactions with other factors. We conclude that Cbf1p is required for normal nucleosome positioning wherever the CACGTG motif occurs in gene regulatory DNA. Cbf1p has been shown to interact with the chromatin-remodeling ATPase Isw1p. Here we show that recruitment of Isw1p by Cbf1p is likely to be general but that Isw1p is only partially required for Cbf1p-dependent chromatin structures.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Kent NA, Eibert SM, Mellor J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference