Reference: Basu U, et al. (2004) Reverse genetic analysis of the glutathione metabolic pathway suggests a novel role of PHGPX and URE2 genes in aluminum resistance in Saccharomyces cerevisiae. Mol Genet Genomics 271(5):627-37

Reference Help

Abstract


We have taken a systematic genetic approach to study the potential role of glutathione metabolism in aluminum (Al) toxicity and resistance, using disruption mutants available in Saccharomyces cerevisiae. Yeast disruption mutants defective in phospholipid hydroperoxide glutathione peroxidases (PHGPX; phgpx1 Delta, phgpx2 Delta, and phgpx3Delta), were tested for their sensitivity to Al. The triple mutant, phgpx1 Delta/2Delta/3Delta, was more sensitive to Al (55% reduction in growth at 300 microM Al) than any single phgpx mutant, indicating that the PHGPX genes may collectively contribute to Al resistance. The hypersensitivity of phgpx3Delta to Al was overcome by complementation with PHGPX3, and all PHGPX genes showed increased expression in response to Al in the wild-type strain (YPH250), with maximum induction of approximately 2.5-fold for PHGPX3. Both phgpx3Delta and phgpx1Delta/2Delta/3Delta mutants were sensitive to oxidative stress (exposure to H(2)O(2) or diamide). Lipid peroxidation was also increased in the phgpx1Delta/2Delta/3Delta mutant compared to the parental strain. Disruption mutants defective in genes for glutathione S-transferases (GSTs) (gtt1Delta and gtt2Delta), glutathione biosynthesis (gsh1Delta and gsh2Delta), glutathione reductase (glr1Delta) and a glutathione transporter (opt1Delta) did not show hypersensitivity to Al relative to the parental strain BY4741. Interestingly, a strain deleted for URE2, a gene which encodes a prion precursor with homology to GSTs, also showed hypersensitivity to Al. The hypersensitivity of the ure2Delta mutant could be overcome by complementation with URE2. Expression of URE2 in the parental strain increased approximately 2-fold in response to exposure to 100 microM Al. Intracellular oxidation levels in the ure2Delta mutant showed a 2-fold (non-stressed) and 3-fold (when exposed-to 2 mM H(2)O(2)) increase compared to BY4741; however, the ure2Delta mutant showed no change in lipid peroxidation compared to the control. The phgpx1Delta/2Delta/3Delta and ure2Delta mutants both showed increased accumulation of Al. These findings suggest the involvement of PHGPX genes and a novel role of URE2 in Al toxicity/resistance in S. cerevisiae.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Basu U, Southron JL, Stephens JL, Taylor GJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference