Take our Survey

Reference: Nguyen DT, et al. (2001) Multiple Yap1p-binding sites mediate induction of the yeast major facilitator FLR1 gene in response to drugs, oxidants, and alkylating agents. J Biol Chem 276(2):1138-45

Reference Help

Abstract

The bZip transcription factor Yap1p plays an important role in oxidative stress response and multidrug resistance in Saccharomyces cerevisiae. We have previously demonstrated that the FLR1 gene, encoding a multidrug transporter of the major facilitator superfamily, is a transcriptional target of Yap1p. The FLR1 promoter contains three potential Yap1p response elements (YREs) at positions -148 (YRE1), -167 (YRE2), and -364 (YRE3). To address the function of these YREs, the three sites have been individually mutated and tested in transactivation assays. Our results show that (i) each of the three YREs is functional and important for the optimal transactivation of FLR1 by Yap1p and that (ii) the three YREs are not functionally equivalent, mutation of YRE3 being the most deleterious, followed by YRE2 and YRE1. Simultaneous mutation of the three YREs abolished transactivation of the promoter by Yap1p, demonstrating that the three sites are essential for the regulation of FLR1 by Yap1p. Gel retardation assays confirmed that Yap1p differentially binds to the three YREs (YRE3 > YRE2 > YRE1). We show that the transcription of FLR1 is induced upon cell treatment with the oxidizing agents diamide, diethylmaleate, hydrogen peroxide, and tert-butyl hydroperoxide, the antimitotic drug benomyl, and the alkylating agent methylmethane sulfonate and that this induction is mediated by Yap1p through the three YREs. Finally, we show that FLR1 overexpression confers resistance to diamide, diethylmaleate, and menadione but hypersensitivity to H(2)O(2), demonstrating that the Flr1p transporter participates in Yap1p-mediated oxidative stress response in S. cerevisiae.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Nguyen DT, Alarco AM, Raymond M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference