Reference: Dunlop PC, et al. (1980) Nitrogen catabolite repression of asparaginase II in Saccharomyces cerevisiae. J Bacteriol 143(1):422-6

Reference Help

Abstract


The biosynthesis of asparaginase II in Saccharomyces cerevisiae is subject to strong catabolite repression by a variety of nitrogen compounds. In the present study, asparaginase II synthesis was examined in a wild-type yeast strain and in strains carrying gdhA, gdhCR, or gdhCS mutations. The following effects were observed: (i) In the wild-type strain, the biosynthesis of asparaginase II was strongly repressed when either 10 mM ammonium sulfate or various amino acids (10 mM) served as the source of nitrogen. (ii) In a yeast strain carrying the gdhA mutation, asparaginase II was synthesized at fully derepressed levels when 10 mM ammonium sulfate was the source of nitrogen. When amino acids (10 mM) served as the nitrogen source, asparaginase II synthesis was strongly repressed. (iii) In a strain carrying the gdhCR mutation, the synthesis of asparaginase II was partially (30 to 40%) derepressed when either 10 mM ammonium sulfate or amino acids were present in the medium. (iv) In a yeast strain containing both gdhA and gdhCR mutations, asparaginase II synthesis was fully derepressed when 10 mM ammonium sulfate was the nitrogen source and partially derepressed when 10 mM amino acids were present. (v) Yeast strains carrying the gdhCS mutation were indistinguishable from the wild-type strain with respect to asparaginase II synthesis.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Dunlop PC, Meyer GM, Roon RJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference