Reference: Burston SG and Clarke AR (1995) Molecular chaperones: physical and mechanistic properties. Essays Biochem 29:125-36

Reference Help

Abstract


Molecular chaperones can be broadly defined as proteins which interact with non-native states of other protein molecules. This activity is important in the folding of newly synthesized polypeptides and the assembly of multisubunit structures; the maintenance of proteins in unfolded states suitable for translocation across membranes; and the stabilization of inactive forms of proteins which are turned on by cellular signals; and the stabilization of proteins unfolded during cellular stress. The major chaperone classes are hsp60 (including TCP1), hsp70 and hsp90. All these proteins prevent the aggregation of unfolded proteins and the strength of interaction with their protein substrates is modified by the binding and hydrolysis of ATP. Hsp70 is a dimeric and ubiquitous protein which binds its substrates in an extended conformation through hydrophobic interactions. It binds to newly synthesized proteins and is required for protein transport. In its ATP-bound state it has a low protein affinity but when the nucleotide is hydrolysed to give the ADP state the affinity is increased. Hsp70 in E. coli (DnaK) is regulated by two co-proteins: DnaJ (of which there are homologues in eukaryotes) stimulates hydrolysis of ATP and GrpE promotes the dissociation of ADP to allow rebinding of ATP. Thus DnaJ promotes the association of substrate proteins and GrpE promotes dissociation. Hsp60 is a large, tetradecameric protein with a central cavity in which non-native protein structures are proposed to bind. It is essential for the folding of a huge spectrum of unrelated proteins and is present in all biological compartments except the ER. As in hsp70, the binding of ATP stimulates release of the substrate and its hydrolysis restores high binding affinity. It functions in conjunction with a co-protein, cpn10, which enhances its ability to eject proteins during the ATPase cycle. The enhancement of folding yields arises either from the prevention of irreversible aggregation or the ability to unfold misfolded structures and allow further attempts to arrive at the native state. Proteins of the hsp90 class are found associated with inactive or unstable substrate proteins within the cell, thus preventing their aggregation and/or permitting rapid activation.

Reference Type
Journal Article | Review | Review, Tutorial
Authors
Burston SG, Clarke AR
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference