Reference: Manas P, et al. (1997) Isolation of new nonconditional Saccharomyces cerevisiae mutants defective in asparagine-linked glycosylation. Glycobiology 7(4):487-97

Reference Help

Abstract


We describe the isolation and partial characterization of Saccharomyces cerevisiae nonconditional mutants that show defects in N-glycosylation of proteins. The selection method is based on the reduction of affinity for the ion exchanger QAE-Sephadex as a consequence of the decrease in the negative charge of the cell surface. This characteristic reflects a decrease in the incorporation of mannosylphosphate units into the N-linked oligosaccharides of the mannoproteins. The mutants exhibit low affinity for the basic dye alcian blue and for that reason we have called them Idb (low dye binding) mutants. Eight of the complementation groups seem to be new as shown by complementation studies with previously isolated mutants of similar phenotype. Four of the groups showed a significant reduction in the number and/or size of the N-linked oligosaccharides attached to secreted invertase. We have analyzed the N-linked oligosaccharides of Idb1 and Idb2, the mutants that show the most drastic reduction in the affinity for the alcian blue dye. In both cases, the purified endo H-released oligosaccharides from the mannoproteins lacked detectable amounts of phosphate groups as shown by ion exchange chromatography and the 1H NMR spectra. In addition, Ibd1 synthesizes a truncated and unbranched outer chain lacking any alpha (1,2) linked mannoses attached to the alpha (1,6) linear backbone.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Manas P, Olivero I, Avalos M, Hernandez LM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference