Take our Survey

Reference: Panaretou C, et al. (1997) Characterization of p150, an adaptor protein for the human phosphatidylinositol (PtdIns) 3-kinase. Substrate presentation by phosphatidylinositol transfer protein to the p150.Ptdins 3-kinase complex. J Biol Chem 272(4):2477-85

Reference Help

Abstract

Genetic and biochemical studies have shown that the phosphatidylinositol (PtdIns) 3-kinase encoded by the yeast VPS34 gene is required for the efficient sorting and delivery of proteins to the vacuole. A human homologue of the yeast VPS34 gene product has recently been characterized as part of a complex with a cellular protein of 150 kDa (Volinia, S., Dhand, R., Vanhaesebroeck, B., MacDougall, L. K., Stein, R., Zvelebil, M. J., Domin, J., Panaretou, C., and Waterfield, M. D. (1995) EMBO J. 14, 3339-3348). Here, cDNA cloning is used to show that the amino acid sequence of this protein, termed p150, is 29.6% identical and 53% similar to the yeast Vps15p protein, an established regulator of Vps34p. Northern blot analysis showed a ubiquitous tissue distribution for p150 similar to that previously observed with PtdIns 3-kinase. Recombinant p150 associated with PtdIns 3-kinase in vitro in a stable manner, resulting in a 2-fold increase in lipid kinase activity. Addition of phosphatidylinositol transfer protein (PI-TP) further stimulated the lipid kinase activity of the p150.PtdIns 3-kinase complex 3-fold. A PtdIns 3-kinase activity could also be co-immunoprecipitated from human cell lysates using anti-PI-TP antisera. This observation demonstrates that an interaction between a PtdIns 3-kinase and PI-TP occurs in vivo, which further implicates lipid transfer proteins in the regulation of PtdIns 3-kinase activity. These results suggest that the Vps15p.Vps34p complex has been conserved from yeast to man and in both species is involved in protein trafficking.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Panaretou C, Domin J, Cockcroft S, Waterfield MD
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference