Reference: Jedd G, et al. (1995) The Ypt1 GTPase is essential for the first two steps of the yeast secretory pathway. J Cell Biol 131(3):583-90

Reference Help

Abstract


Small GTPases of the rab family are involved in the regulation of vesicular transport. The restricted distribution of each of these proteins in mammalian cells has led to the suggestion that different rab proteins act at different steps of transport (Pryer, N. K., L. J. Wuestehube, and R. Sheckman. 1992. Annu Rev. Biochem. 61:471-516; Zerial, M., and H. Stenmark. 1993. Curr. Opin. Cell Biol. 5:613-620). However, in this report we show that the Ypt1-GTPase, a member of the rab family, is essential for more than one step of the yeast secretory pathway. We determined the secretory defect conferred by a novel ypt1 mutation by comparing the processing of several transported glycoproteins in wild-type and mutant cells. The ypt1-A136D mutant has a change in an amino acid that is conserved among rab GTPases. This mutation leads to a rapid and tight secretory block upon a shift to the restrictive temperature, and allows for the identification of the specific steps in the secretory pathway that directly require Ypt1 protein (Ypt1p). The ypt1-A136D mutant exhibits tight blocks in two secretory steps, ER to cis-Golgi and cis- to medial-Golgi, but later steps are unaffected. Thus, it is unlikely that Ypt1p functions as the sole determinant of fusion specificity. Our results are more consistent with a role for Ypt1/rab proteins in determining the directionality or fidelity of protein sorting.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Jedd G, Richardson C, Litt R, Segev N
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference