Take our Survey

Reference: Branda SS and Isaya G (1995) Prediction and identification of new natural substrates of the yeast mitochondrial intermediate peptidase. J Biol Chem 270(45):27366-73

Reference Help

Abstract

Most mitochondrial precursor proteins are processed to the mature form in one step by mitochondrial processing peptidase (MPP), while a subset of precursors destined for the matrix or the inner membrane are cleaved sequentially by MPP and mitochondrial intermediate peptidase (MIP). We showed previously that yeast MIP (YMIP) is required for mitochondrial function in Saccharomyces cerevisiae. To further define the role played by two-step processing in mitochondrial biogenesis, we have now characterized the natural substrates of YMIP. A total of 133 known yeast mitochondrial precursors were collected from the literature and analyzed for the presence of the motif RX(decreases)(F/L/I)XX(T/S/G)XXXX(decreases), typical of precursors cleaved by MPP and MIP. We found characteristic MIP cleavage sites in two distinct sets of proteins: respiratory components, including subunits of the electron transport chain and tricarboxylic acid cycle enzymes, and components of the mitochondrial genetic machinery, including ribosomal proteins, translation factors, and proteins required for mitochondrial DNA metabolism. Representative precursors from both sets were cleaved to predominantly mature form by mitochondrial matrix or intact mitochondria from wild-type yeast. In contrast, intermediate-size forms were accumulated upon incubation of the precursors with matrix from mip1 delta yeast or intact mitochondria from mip1ts yeast, indicating that YMIP is necessary for maturation of these proteins. Consistent with the fact that some of these substrates are essential for the maintenance of mitochondrial protein synthesis and mitochondrial DNA replication, mip1 delta yeast undergoes loss of functional mitochondrial genomes.

Reference Type
Journal Article
Authors
Branda SS, Isaya G
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference