Reference: Slawecki ML, et al. (1995) Identification of three distinct peroxisomal protein import defects in patients with peroxisome biogenesis disorders. J Cell Sci 108 ( Pt 5):1817-29

Reference Help

Abstract


Zellweger syndrome, neonatal adrenoleukodystrophy, infantile Refsum's disease, and classical rhizomelic chondrodysplasia punctata are lethal genetic disorders caused by defects in peroxisome biogenesis. We report here a characterization of the peroxisomal matrix protein import capabilities of fibroblasts from 62 of these peroxisome biogenesis disorder patients representing all ten known complementation groups. Using an immunofluorescence microscopy assay, we identified three distinct peroxisomal protein import defects among these patients. Type-1 cells have a specific inability to import proteins containing the PTS1 peroxisomal targeting signal, type-2 cells have a specific defect in import of proteins containing the PTS2 signal, and type-3 cells exhibit a loss of, or reduction in, the import of both PTS1 and PTS2 proteins. Considering that the common cellular phenotype of Zellweger syndrome, neonatal adrenoleukodystrophy and infantile Refsum's disease has been proposed to be a complete defect in peroxisomal matrix protein import, the observation that 85% (40/47) of the type-3 cell lines imported a low but detectable amount of both PTS1 and PTS2 proteins was surprising. Furthermore, different cell lines with the type-3 defect exhibited a broad spectrum of different phenotypes; some showed a complete absence of matrix protein import while others contained 50-100 matrix protein-containing peroxisomes per cell. We also noted certain relationships between the import phenotypes and clinical diagnoses: both type-1 cell lines were from neonatal adrenoleukodystrophy patients, all 13 type-2 cell lines were from classical rhizomelic chondrodysplasia punctata patients, and the type-3 import defect was found in the vast majority of Zellweger syndrome (22/22), neonatal adrenoleukodytrophy (17/19), and infantile Refsum's disease (7/7) patients. Our finding that all type-1 cell lines were from the second complementation group (CG2), all 13 type-2 cell lines were from CG11, and that cells from the eight remaining complementation groups only exhibit the type-3 defect indicates that mutations in particular genes give rise to the different types of peroxisomal protein import defects. This hypothesis is further supported by correlations between certain complementation groups and particular type-3 subphenotypes: all patient cell lines belonging to CG3 and CG10 showed a complete absence of peroxisomal matrix protein import while those from CG6, CG7, and CG8 imported some peroxisomal matrix proteins. However, the fact that cell lines from within particular complementation groups (CG1, CG4) could have different matrix protein import characteristics suggests that allelic heterogeneity also plays an important role in generating different import phenotypes in certain patients.(ABSTRACT TRUNCATED AT 400 WORDS)

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Slawecki ML, Dodt G, Steinberg S, Moser AB, Moser HW, Gould SJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference