Reference: Hortner H, et al. (1982) Regulation of synthesis of catalases and iso-1-cytochrome c in Saccharomyces cerevisiae by glucose, oxygen and heme. Eur J Biochem 128(1):179-84

Reference Help

Abstract


The regulation of the hemoproteins catalase T, catalase A and iso-1-cytochrome c was studied in the yeast Saccharomyces cerevisiae. Levels of catalase T and catalase A mRNAs are low or undetectable in anaerobic and heme-deficient cells, and in wild type strains grown on high glucose concentrations. Regulatory mutants (cgr4 and cas1), which have previously been shown to have high catalase T activity when grown in the absence of oxygen or on high glucose concentrations, have high levels of catalase T mRNA when grown under glucose repression conditions. Whereas no catalase T mRNA could be detected in a heme-deficient (ole3) single mutant, double mutants (ole3 cgr4) and (ole3 cas1) contain mature catalase T mRNA. Catalase T and A mRNAs are accumulated rapidly during adaptation of anaerobic cells to oxygen. Anaerobic and heme-deficient cells lack or have extremely low levels of iso-1-cytochrome c mRNA, which, like catalase mRNAs, is accumulated rapidly during oxygen adaptation. The results obtained demonstrate that glucose, oxygen and heme regulate the synthesis of the hemoproteins studied by controlling mRNA levels. In addition, posttranscriptional, probably translational control has to be postulated at least in the case of catalases, to explain the results obtained.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Hortner H, Ammerer G, Hartter E, Hamilton B, Rytka J, Bilinski T, Ruis H
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference