Reference: Kim IH, et al. (1989) Induction of an antioxidant protein of Saccharomyces cerevisiae by O2, Fe3+, or 2-mercaptoethanol. Proc Natl Acad Sci U S A 86(16):6018-22

Reference Help

Abstract


A soluble 27-kDa protein from Saccharomyces cerevisiae specifically prevents the inactivation of various enzymes caused by a nonenzymatic Fe3+/O2/thiol mixed-function oxidation system but not by mixed-function oxidation systems in which the thiol component is replaced by another electron donor-e.g., ascorbate. In this report, using a 125I-labeled monospecific antibody against the 27-kDa protein, we measured changes in the 27-kDa protector protein in response to changes in oxidative stress and heat shock. With a shift from an anaerobic (95% N2/5% CO2) to a hyperaerobic (95% O2/5% CO2) atmosphere, a 3-fold increase was observed. This increase was prevented by cycloheximide, indicating that the induction requires new protein synthesis. The antioxidant protein synthesis was also significantly enhanced by the addition of either 2-mercaptoethanol or Fe3+ to the growth medium. Radioimmunoassay results also show that the antioxidant protein is an abundant protein, as it constitutes 0.7% of total soluble protein from yeast grown aerobically. Immunoblotting experiments revealed that rat tissues also contain a 27-kDa protein that can be specifically recognized by antibodies against the yeast protein. These results suggest that in vivo induction in yeast of the 27-kDa protein may represent an adaptive response that evolved to protect cells against damage caused by thiol-dependent mixed-function oxidation systems, and the antioxidant protein is conserved in mammalian tissues. A heat shock applied to yeast did not cause any significant increases in the concentration of the 27-kDa protein.

Reference Type
Journal Article
Authors
Kim IH, Kim K, Rhee SG
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference