Reference: Newton CH, et al. (1990) A family of genes encode the multiple forms of the Saccharomyces cerevisiae ribosomal proteins equivalent to the Escherichia coli L12 protein and a single form of the L10-equivalent ribosomal protein. J Bacteriol 172(2):579-88

Reference Help

Abstract


The budding yeast Saccharomyces cerevisiae contains a family of genes that encodes four different but related small acidic ribosomal proteins designated L12eIA, L12eIB, L12eIIA, and L12eIIB and a single larger protein designated L10e. These proteins are equivalent (e) to the L12 and L10 proteins of Escherichia coli that assemble as a 4:1 complex onto the large ribosomal subunit. The five yeast genes (or their cDNAs) have been cloned and sequenced (M. Remacha, M. T. Saenz-Robles, M. D. Vilella, and J. P. G. Ballesta, J. Biol. Chem. 263:9044-9101, 1988; K. Mitsui and K. Tsurugi, Nucleic Acids Res. 16:3573, 3574, and 3575, 1988; this work). Here, the transcripts of these genes were characterized and quantitated and the proteins they encode were compared and aligned. Four of the genes, L12eIA, -IB, -IIA, and L10e, are uninterrupted, whereas the L12eIIB gene contains a 301-nucleotide-long intron between codons 38 and 39. The transcripts derived from each of these genes were analyzed by Northern (RNA) hybridization, primer extension, and S1 nuclease protection. All five genes are expressed, albeit at different levels. The transcript levels are coordinate and exhibit growth rate-dependent regulation in rich (glucose) and poor (ethanol) media. The five yeast proteins each contain a highly conserved acidic carboxy terminus of about 20 residues in length. This domain of unknown function is also present in archaebacterial but absent from eubacterial L10e and L12e proteins. Comparisons of the factor-binding domains in the yeast and other eucaryotic and archaebacterial L12e proteins indicate that the original duplication to produce the type I and II genes was a very ancient event. The evolutionary relationships between the eucaryotic, archaebacterial, and eubacterial L10e and L12e genes (and proteins) are discussed.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Newton CH, Shimmin LC, Yee J, Dennis PP
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference