Take our Survey

Reference: Simon SM and Aderem A (1992) Myristoylation of proteins in the yeast secretory pathway. J Biol Chem 267(6):3922-31

Reference Help

Abstract


Protein myristoylation was investigated in the yeast secretory pathway. Conditional secretory mutations were used to accumulate inteRmediaries in the pathway between the endoplasmic reticulum and Golgi (sec 18, 20), within the Golgi (sec 7), and between the Golgi and plasma membrane (sec 1, 3, 4, 5, 6, 8, 9). The accumulation of vesicles was paralleled by the enrichment of a defined subset of proteins modified either via ester or amide linkages to myristic acid: Myristoylated proteins of 21, 32, 49, 56, 75, and 136 kDa were enriched between the endoplasmic reticulum and Golgi; proteins of 21, 32, 45, 56, 75, 136 kDa were enriched by blocks within the Golgi; and proteins of 18, 21, 32, 36, 49, 68, and 136 kDa were trapped in a myristoylated form by blocks between the Golgi and plasma membrane. This enrichment of myristoylated proteins was reversed upon returning the cells to the permissive temperature for secretion. The fatty acid was linked to the 21-kDa protein via a hydroxylamine-resistant amide linkage (N-myristoylation) and to the proteins of 24, 32, 49, 56, 68, 136 kDa via hydroxylamine-labile ester linkage (E-myristoylation). In addition, myristoylated proteins of 21, 56, and 136 kDa were glycosylated via amino linkages to asparagine. This suggests they are exposed to the lumen of the secretory pathway. Three proteins (24, 32, and 56) were E-myristoylated in the presence of protein synthesis inhibitors, indicating this modification can occur posttranslationally. After using cycloheximide to clear protein passengers from the secretory pathway the 21-, 32-, and 56-kDa proteins continued to accumulate in a myristoylated form when vesicular transport was blocked between the Golgi and plasma membrane. These data suggest that myristoylation occurs on a component of the secretory machinery rather than on a passenger protein.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Simon SM, Aderem A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference