Reference: Landolt-Marticorena C, et al. (1999) Substrate- and inhibitor-induced conformational changes in the yeast V-ATPase provide evidence for communication between the catalytic and proton-translocating sectors. J Biol Chem 274(37):26057-64

Reference Help

Abstract


The vacuolar-type H(+)-ATPases (V-ATPases) are composed of two distinct sectors, a catalytic complex (V(1)) involved in ATP hydrolysis and a membrane-associated complex (V(0)) mediating proton translocation across a lipid bilayer. To date, little is known about the mechanism by which these two functions are coupled. We sought to examine the impact of nucleotide and cation binding on the structure of the core components of the catalytic complex and to determine whether conformational changes within the catalytic complex impact subunits of the membrane-associated complex. Nucleotide- and cation- induced changes in the catalytic core of the V-ATPase were investigated by monitoring changes in the rate and pattern of tryptic digests. ATP.Mg-induced changes were detected in both the catalytic (Vma1p or 69 kDa) and the regulatory subunits (Vma2p or 60 kDa) of the V(1) sector. ATP alone increased the rate of trypsinization of the regulatory subunit, but did not have any effect on Vma1p. Surprisingly, ATP also had an impact on the 95-kDa subunit, a component of the V(0) sector of the V-ATPase. Although the presence of divalent cations had no impact on the V(1) sector, the rate of trypsinization of the 95-kDa subunit was greatly enhanced. The effect of divalent cations on the structure of the 95-kDa subunit was abrogated when trypsinization was performed in the absence of the catalytic sector. Addition of bafilomycin A(1), a V-ATPase inhibitor that putatively binds to the 95-kDa subunit, increased the rate of trypsinization of the catalytic subunit. These data suggest that structural alterations within the V(1) sector result in alterations within the V(0) sector and vice versa. Clearly, a structural link must exist to couple the two sectors. The 95-kDa subunit is ideally suited to fulfill this role. Hydropathy analysis suggests a bipartite structure, with the NH(2)-terminal portion predicted to lie in an aqueous environment and the C-terminal portion predicted to contain 6 transmembrane segments. Tryptic digests of sealed vacuolar vesicles and immunofluorescence studies revealed that the large hydrophilic NH(2)-terminal domain of the 95-kDa subunit is localized toward the cytosol. This region therefore is ideally positioned to interact with components of the V(1) complex, potentially functioning as the elusive link between the two sectors of the V-ATPase.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Landolt-Marticorena C, Kahr WH, Zawarinski P, Correa J, Manolson MF
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference