Take our Survey

Reference: Reimann B, et al. (1999) Initial characterization of the nascent polypeptide-associated complex in yeast. Yeast 15(5):397-407

Reference Help

Abstract

The three subunits of the nascent polypeptide-associated complex (alpha, beta1, beta3) in Saccharomyces cerevisiae are encoded by three genes (EGD2, EGD1, BTT1). We found the complex bound to ribosomes via the beta-subunits in a salt-sensitive manner, in close proximity to nascent polypeptides. Estimation of the molecular weight of the complex of wild-type cells and cells lacking one or two subunits revealed that the composition of the complex is variable and that as yet unknown proteins might be included. Regardless of the variability, a certain balance of the subunits has to be maintained: the deletion of one subunit causes downregulation of the remaining subunits at physiological growth temperature. Cells lacking both beta-subunits are unable to grow at 37 degrees C, most likely due to a toxic effect of the alpha-subunit. Based on in vitro experiments, it has been proposed that the function of mammalian nascent-polypeptide associated complexes (NAC) is to prevent inappropriate targeting of non-secretory nascent polypeptides. In vivo, however, the lack of NAC does not cause secretion of signal-less invertase in yeast. This result and the lack of a drastic phenotype of cells missing one, two or three subunits at optimal conditions (28 degrees C, YPD-medium) suggest either the existence of a substitute for NAC or that cells tolerate or 'repair' the damage caused by the absence of NAC.

Reference Type
Journal Article
Authors
Reimann B, Bradsher J, Franke J, Hartmann E, Wiedmann M, Prehn S, Wiedmann B
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference