Reference: Sekinger EA and Gross DS (1999) SIR repression of a yeast heat shock gene: UAS and TATA footprints persist within heterochromatin. EMBO J 18(24):7041-55

Reference Help

Abstract


Previous work has suggested that products of the Saccharomyces cerevisiae Silent Information Regulator (SIR) genes form a complex with histones, nucleated by cis-acting silencers or telomeres, which represses transcription in a position-dependent but sequence-independent fashion. While it is generally thought that this Sir complex works through the establishment of heterochromatin, it is unclear how this structure blocks transcription while remaining fully permissive to other genetic processes such as recombination or integration. Here we examine the molecular determinants underlying the silencing of HSP82, a transcriptionally potent, stress-inducible gene. We find that HSP82 is efficiently silenced in a SIR-dependent fashion, but only when HMRE mating-type silencers are configured both 5' and 3' of the gene. Accompanying dominant repression are novel wrapped chromatin structures within both core and upstream promoter regions. Strikingly, DNase I footprints mapping to the binding sites for heat shock factor (HSF) and TATA-binding protein (TBP) are strengthened and broadened, while groove-specific interactions, as detected by dimethyl sulfate, are diminished. Our data are consistent with a model for SIR repression whereby transcriptional activators gain access to their cognate sites but are rendered unproductive by a co-existing heterochromatic complex.

Reference Type
Journal Article
Authors
Sekinger EA, Gross DS
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference