Reference: Greenberg ML, et al. (1986) New positive and negative regulators for general control of amino acid biosynthesis in Saccharomyces cerevisiae. Mol Cell Biol 6(5):1820-9

Reference Help

Abstract


The biosynthesis of most amino acids in Saccharomyces cerevisiae is coregulated. Starvation for a single amino acid results in the derepression of amino acid biosynthetic enzymes in many unrelated pathways. This phenomenon, known as general control, is mediated by both positive (GCN) and negative (GCD) regulatory genes. In this paper we describe the identification and characterization of several new regulatory genes for this system, GCN6, GCN7, GCN8, GCN9, and GCD5. A mutation in the negative regulator GCD5 was isolated on the basis of its suppression of a gcn2 mutation. The effect of gcd5 is a posttranscriptional increase in histidine biosynthetic enzyme activity. Suppressors of gcd5 which are deficient in derepression were in turn isolated. Eight such mutations, defining four new positive regulatory genes (GCN6 through GCN9), were obtained. These mutations are recessive, confer sensitivity to multiple amino acid analogs, and result in decreased mRNA levels for genes under general control. The GCN6 and GCN7 gene products were shown to be positive regulators for transcription of the GCN4 gene, the most direct-acting positive regulator thus far identified. The interaction of GCN6 and GCN7 with GCN4 is fundamentally different from that of previously isolated GCN genes. It should also be noted that these gcn selections gave a completely different nonoverlapping set of mutations from earlier selections which relied on analog sensitivity. Thus, we may have identified a new class of GCN genes which are functionally distinct from GCN1 through GCN5.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Greenberg ML, Myers PL, Skvirsky RC, Greer H
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference