Reference: Moriyama K, et al. (1996) Phosphorylation of Ser-3 of cofilin regulates its essential function on actin. Genes Cells 1(1):73-86

Reference Help

Abstract


BACKGROUND: Cofilin is a low-molecular weight actin-modulating protein, and is structurally and functionally conserved in eucaryotes from yeast to mammals. The functions of cofilin appear to be regulated by phosphorylation and dephosphorylation. RESULTS: A proteolytic study of phosphorylated porcine cofilin and expression of a mutated cofilin in cultured cells revealed that Ser-3 is the unique phosphorylation site. Phosphorylated cofilin was found not to bind to either F- or G-actin while unphosphorylated cofilin binds to both. S3D-cofilin, in which Ser-3 was replaced with Asp, did not bind in vitro to actin while S3A-cofilin did. The transient over-expression of wild-type or S3A-cofilin in cultured cells caused disruption of preexisting actin structures and induced cytoplasmic actin bundles. Heat shock-induced nuclear or NaCl buffer-induced cytoplasmic actin/cofilin rods contained the expressed cofilin. In contrast, the over-expression of S3D-cofilin did not alter the actin structures. Induced actin rods did not contain S3D-cofilin. S3D-porcine cofilin did not complement the lethality associated with delta cof1 mutations in Saccharomyces cerevisiae while wild-type and S3A-cofilin did. Furthermore, we found that S2A/S4D- and S2D/S4D-yeast cofilin mutants were not viable. CONCLUSIONS: We conclude that the function of cofilin is negatively regulated in vivo by phosphorylation of Ser-3 and that cells require the function of unphosphorylated cofilin for viability.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | In Vitro
Authors
Moriyama K, Iida K, Yahara I
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference