Reference: Tedford K, et al. (1997) Regulation of the mating pheromone and invasive growth responses in yeast by two MAP kinase substrates. Curr Biol 7(4):228-38

Reference Help

Abstract


BACKGROUND: In the budding yeast Saccharomyces cerevisiae, components ofa single mitogen-activated protein (MAP) kinase pathway transduce two distinct signals, each of which activates an independent developmental programme: peptide mating pheromones initiate the mating response, whereas nutrient limitation initiates filamentous growth. One of the MAP kinases in this pathway, Fus3, triggers mating but antagonizes filamentous growth, while the other, Kss 1, preferentially triggers filamentous growth. Both kinases activate the same transcription factor, Ste 12, which can stimulate gene expression specific to each of the developmental programmes. The precise mechanism by which these MAP kinases activate Ste 12, however, is not clear. RESULTS: Two newly identified proteins, Rst 1 and Rst 2 (also known as Dig1 and Dig2), were found to associate physically with Fus3 and Ste12. Rst1 and Rst2 were prominent substrates in kinase reactions of Fus3 immune complexes from pheromone-treated cells. Association of Fus3 with Ste12 required Rst1 and Rst2, and activation of Fus3 by pheromone caused release of Ste12 from the Fus3 complex. Although rst1 and rst2 single mutants had no obvious phenotype, both filamentous growth and mating-specific gene expression were constitutive in rst1 rst2 double mutants. The phenotype of rst1 rst2 cells required Ste12 function, but did not require the function of upstream kinases. Consistent with Rst1 and Rst2 having a role in Ste12 regulation, both proteins were localized to the nucleus. CONCLUSIONS: Rst1 and Rst2 repress the mating and filamentous growth responses of S. cerevisiae by directly inhibiting Ste12. Activation of Fus3 or Kss1 may cause phosphorylation-dependent release of Ste12 from Rst1/Rst2 and thereby activate Ste12-dependent transcription.

Reference Type
Journal Article
Authors
Tedford K, Kim S, Sa D, Stevens K, Tyers M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference