Reference: Schild D, et al. (1992) Identification of RAD16, a yeast excision repair gene homologous to the recombinational repair gene RAD54 and to the SNF2 gene involved in transcriptional activation. Yeast 8(5):385-95

Reference Help

Abstract


The RAD54 gene of Saccharomyces cerevisiae is involved in the recombinational repair of DNA damage. The predicted amino acid sequence of the RAD54 protein shows significant homologies with the yeast SNF2 protein, which is required for the transcriptional activation of a number of diversely regulated genes. These proteins are 31% identical in a 492-amino acid region that includes presumed nucleotide and Mg2+ binding sites. We noted previously that the SNF2 protein also shares homology with a partial open reading frame (ORF) that was reported with the sequence of an adjacent gene. This ORF also shares homology with the RAD54 protein. To test whether this ORF is involved in transcriptional activation or DNA repair, yeast strains deleted for part of it have been isolated. These strains do not show a Snf-like phenotype, but they are UV sensitive. This gene has been identified as RAD16, a gene involved in the excision repair of DNA damage. Analysis of the rad16 deletion mutations indicates that RAD16 encodes a non-essential function and is not absolutely required for excision repair. Outside the region of homology to RAD54 and SNF2, the predicted RAD16 protein contains a novel cysteine-rich motif that may bind zinc and that has been found recently in eleven other proteins, including the yeast RAD18 protein. The homologies between RAD16, RAD54 and SNF2 are also shared by several additional, recently isolated yeast and Drosophila genes.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Schild D, Glassner BJ, Mortimer RK, Carlson M, Laurent BC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference