Take our Survey

Reference: Lancien M, et al. (1998) Molecular characterization of higher plant NAD-dependent isocitrate dehydrogenase: evidence for a heteromeric structure by the complementation of yeast mutants. Plant J 16(3):325-33

Reference Help

Abstract

NAD-dependent isocitrate dehydrogenase (IDH) is a key enzyme controlling the activity of the citric acid cycle. Despite more than 30 years of work, the plant enzyme remains poorly characterized. In this paper, a molecular characterization of the plant IDH is presented. Starting from probes defined according to sequence comparisons, three full-length cDNAs named Ntidha, Ntidhb and Ntidhc encoding different IDH subunits have been isolated from a Nicotiana tabacum cell suspension library. Sequence comparisons of the tobacco IDH subunits with the E. coli NADP-dependent enzyme, and the yeast IDH1 and IDH2 subunits suggested that only IDHa had the capacity to be catalytic as IDHb and IDHc were lacking certain residues implied in catalysis. The ability of antibodies raised against the recombinant IDHa protein to preferentially cross-react with IDH2 indicated that IDHa was more closely related to IDH2 than to IDH1. Complementation of yeast single IDH mutants showed that IDHb and IDHc could replace the function of the yeast regulatory IDH1 subunit. Although IDHa was unable to complement the IDH2 mutant, its catalytic function was revealed by the ability of two heteromeric enzymes, composed of either IDHa with IDHb or IDHa with IDHc, to replace IDH function in a yeast double mutant lacking both subunits. Expression studies at the protein and mRNA levels show that each subunit is present in both root and leaf tissues and that the three IDH genes respond in the same way to nitrate addition. Taken together, such observations suggest that the physiologically active enzyme is composed of the three different subunits. These results show for the first time that the plant IDH is heteromeric and that IDH subunit composition appears to be conserved between plant and animal kingdoms.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Lancien M, Gadal P, Hodges M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference