Reference: Oh CS, et al. (1997) ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. J Biol Chem 272(28):17376-84

Reference Help

Abstract


ELO2 and ELO3 were identified from the Saccharomyces cerevisiae genome data base as homologues of ELO1, a gene involved in the elongation of the fatty acid 14:0 to 16:0. Mutations in these genes have previously been shown to produce pleiotropic effects involving a number of membrane functions. The simultaneous disruption of ELO2 and ELO3 has also been shown to produce synthetic lethality, indicating that they have related and/or overlapping functions. Gas chromatography and gas chromatography/mass spectroscopy analyses reveal that null mutations of ELO2 and ELO3 produce defects in the formation of very long chain fatty acids. Analysis of the null mutants indicates that these genes encode components of the membrane-bound fatty acid elongation systems that produce the 26-carbon very long chain fatty acids that are precursors for ceramide and sphingolipids. Elo2p appears to be involved in the elongation of fatty acids up to 24 carbons. It appears to have the highest affinity for substrates with chain lengths less than 22 carbons. Elo3p apparently has a broader substrate specificity and is essential for the conversion of 24-carbon acids to 26-carbon species. Disruption of either gene reduces cellular sphingolipid levels and results in the accumulation of the long chain base, phytosphingosine. Null mutations in ELO3 result in accumulation of labeled precursors into inositol phosphoceramide, with little labeling in the more complex mannosylated sphingolipids, whereas disruption of ELO2 results in reduced levels of all sphingolipids.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Oh CS, Toke DA, Mandala S, Martin CE
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference