Take our Survey

Reference: Hach A, et al. (2000) The coiled coil dimerization element of the yeast transcriptional activator Hap1, a Gal4 family member, is dispensable for DNA binding but differentially affects transcriptional activation. J Biol Chem 275(1):248-54

Reference Help

Abstract

The heme activator protein Hap1 is a member of the yeast Gal4 family, which consists of transcription factors with a conserved Zn(2)Cys(6) cluster that recognizes a CGG triplet. Many members of the Gal4 family contain a coiled coil dimerization element and bind symmetrically to DNA as homodimers. However, Hap1 possesses two unique properties. First, Hap1 binds asymmetrically to a direct repeat of two CGG triplets. Second, Hap1 binds to two classes of DNA elements, UAS1/CYC1 and UAS/CYC7, and permits differential transcriptional activation at these sites. Here we determined the residues of the Hap1 dimerization domain critical for DNA binding and differential transcriptional activation. We found that the Hap1 dimerization domain is composed of functionally redundant elements that can substitute each other in DNA binding and transcriptional activation. Remarkably, deletion of the coiled coil dimerization element did not severely diminish DNA binding and transcriptional activation at UAS1/CYC1 but completely abolished transcriptional activation at UAS/CYC7. Furthermore, Ala substitutions in the dimerization element selectively diminished transcriptional activation at UAS/CYC7. These results strongly suggest that the coiled coil dimerization element is responsible for differential transcriptional activation at UAS1/CYC1 and UAS/CYC7 and for making contacts with a putative coactivator or part of the transcription machinery.

Reference Type
Journal Article
Authors
Hach A, Hon T, Zhang L
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference