Reference: Reggiori F and Conzelmann A (1998) Biosynthesis of inositol phosphoceramides and remodeling of glycosylphosphatidylinositol anchors in Saccharomyces cerevisiae are mediated by different enzymes. J Biol Chem 273(46):30550-9

Reference Help

Abstract


Metabolic labeling of cells with [3H]dihydrosphingosine ([3H]DHS) allows us to follow the incorporation of this tracer into ceramides (Cer), inositol phosphoceramides (IPCs), and mannosylated IPCs and at the same time to assess the remodeling of glycosylphosphatidylinositol proteins during which preexisting anchor lipid moieties are replaced by [3H]Cer-containing anchors. The results indicate that the remodelases in the endoplasmic reticulum and Golgi use as their substrate Cers that are not generated by the breakdown of IPCs but are newly synthesized. Aureobasidin A, an inhibitor of the IPC synthase Aur1p completely blocks IPC biosynthesis at 0.5 micrograms/ml but does not block remodeling of glycosylphosphatidylinositol anchors even at concentrations up to 10 micrograms/ml. In addition, a synthetic Cer analogue, N-hexanoyl-[3H]DHS, is used as a substrate by Aur1p but not by the remodelases. Thus, remodeling is not mediated by Aur1p although remodeling presumably proceeds by an analogous reaction. Studies with secretion mutants deficient in COPII or COPI coat proteins show that all COPII mutants are unable to introduce [3H]Cer by the Golgi remodelase at the restrictive temperature. This suggests that Cer has to be transported by a COPII-dependent way from the endoplasmic reticulum to Golgi for Golgi remodeling to occur. Golgi remodeling is also not operating in the erd2 mutant and is significantly reduced in COPI mutants, suggesting a dependence of Golgi remodeling on retrotransport.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Reggiori F, Conzelmann A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference