Reference: Tanaka S, et al. (1994) Transcription through the yeast origin of replication ARS1 ends at the ABFI binding site and affects extrachromosomal maintenance of minichromosomes. Nucleic Acids Res 22(19):3904-10

Reference Help

Abstract


When the function of origins of replication in yeast was compromised by placing ARS sequences downstream of strong promoters, ARS activity might have been affected either by transcription or by an altered chromatin configuration induced by the construct. To distinguish between these possibilities, derivatives of the yeast TRP1ARS1 minichromosome were constructed that contained either the DED1 or the PET56 promoter firing against ARS1 (DEDARS and PETARS constructs). PETARS constructs transformed yeast at high frequencies and were maintained as minichromosomes consistent with efficient ARS1 function, but DEDARS constructs transformed at low frequencies and had to be rescued as minichromosomes by insertion of a second ARS (H4-ARS). Chromatin analysis revealed that the ARS1 regions in PETARS and H4-DEDARS constructs were indistinguishable from the ARS1 region of the host TRP1ARS1 circle showing a nuclease sensitive region flanked by a nucleosome. However, RNA-analysis in the ARS region showed high and low levels of transcripts in H4-DEDARS and PETARS, respectively. Transcription elongated through the A, B1, and B2 elements and ended in B3, the binding site for ABFI. We conclude that transcription through ARS1 and not an altered chromatin structure affected ARS activity in these constructs.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Tanaka S, Halter D, Livingstone-Zatchej M, Reszel B, Thoma F
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference