Reference: Ernandes JR, et al. (1998) During the initiation of fermentation overexpression of hexokinase PII in yeast transiently causes a similar deregulation of glycolysis as deletion of Tps1. Yeast 14(3):255-69

Reference Help

Abstract


In the yeast Saccharomyces cerevisiae a novel control exerted by TPS1 (= GGS1 = FDP1 = BYP1 = CIF1 = GLC6 = TSS1)-encoded trehalose-6-phosphate synthase, is essential for restriction of glucose influx into glycolysis apparently by inhibiting hexokinase activity in vivo. We show that up to 50-fold overexpression of hexokinase does not noticeably affect growth on glucose or fructose in wild-type cells. However, it causes higher levels of glucose-6-phosphate, fructose-6-phosphate and also faster accumulation of fructose-1,6-bisphosphate during the initiation of fermentation. The levels of ATP and Pi correlated inversely with the higher sugar phosphate levels. In the first minutes after glucose addition, the metabolite pattern observed was intermediate between those of the tps1 delta mutant and the wild-type strain. Apparently, during the start-up of fermentation hexokinase is more rate-limiting in the first section of glycolysis than phosphofructokinase. We have developed a method to measure the free intracellular glucose level which is based on the simultaneous addition of D-glucose and an equal concentration of radiolabelled L-glucose. Since the latter is not transported, the free intracellular glucose level can be calculated as the difference between the total D-glucose measured (intracellular + periplasmic/extracellular) and the total L-glucose measured (periplasmic/extracellular). The intracellular glucose level rose in 5 min after addition of 100 mM-glucose to 0.5-2 mM in the wild-type strain, +/- 10 mM in a hxk1 delta hxk2 delta glk1 delta and 2-3 mM in a tps1 delta strain. In the strains overexpressing hexokinase PII the level of free intracellular glucose was not reduced. Overexpression of hexokinase PII never produced a strong effect on the rate of ethanol production and glucose consumption. Our results show that overexpression of hexokinase does not cause the same phenotype as deletion of Tps1. However, it mimics it transiently during the initiation of fermentation. Afterwards, the Tps1-dependent control system is apparently able to restrict properly up to 50-fold higher hexokinase activity.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Ernandes JR, De Meirsman C, Rolland F, Winderickx J, de Winde J, Brandão RL, Thevelein JM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference