Reference: Cherest H, et al. (2000) Polyglutamylation of folate coenzymes is necessary for methionine biosynthesis and maintenance of intact mitochondrial genome in Saccharomyces cerevisiae. J Biol Chem 275(19):14056-63

Reference Help

Abstract


One-carbon metabolism is essential to provide activated one-carbon units in the biosynthesis of methionine, purines, and thymidylate. The major forms of folates in vivo are polyglutamylated derivatives. In organisms that synthesize folate coenzymes de novo, the addition of the glutamyl side chains is achieved by the action of two enzymes, dihydrofolate synthetase and folylpolyglutamate synthetase. We report here the characterization and molecular analysis of the two glutamate-adding enzymes of Saccharomyces cerevisiae. We show that dihydrofolate synthetase catalyzing the binding of the first glutamyl side chain to dihydropteroate yielding dihydrofolate is encoded by the YMR113w gene that we propose to rename FOL3. Mutant cells bearing a fol3 mutation require folinic acid for growth and have no dihydrofolate synthetase activity. We show also that folylpolyglutamate synthetase, which catalyzes the extension of the glutamate chains of the folate coenzymes, is encoded by the MET7 gene. Folylpolyglutamate synthetase activity is required for methionine synthesis and for maintenance of mitochondrial DNA. We have tested whether two folylpolyglutamate synthetases could be encoded by the MET7 gene, by the use of alternative initiation codons. Our results show that the loss of mitochondrial functions in met7 mutant cells is not because of the absence of a mitochondrial folylpolyglutamate synthetase.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Cherest H, Thomas D, Surdin-Kerjan Y
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference