Take our Survey

Reference: Jungmann J, et al. (1993) Resistance to cadmium mediated by ubiquitin-dependent proteolysis. Nature 361(6410):369-71

Reference Help

Abstract


Cadmium is a potent poison for living cells. In man, chronic exposure to low levels of cadmium results in damage to kidneys and has been linked to neoplastic disease and ageing, and acute exposure can cause damage to a variety of organs and tissues. Cadmium reacts with thiol groups and can substitute for zinc in certain proteins, but the reason for its toxicity in vivo remains uncertain. In eukaryotes, an important selective proteolysis pathway for the elimination of abnormal proteins that are generated under normal or stress conditions is ATP-dependent and mediated by the ubiquitin system. Substrates of this pathway are first recognized by ubiquitin-conjugating enzymes (or auxiliary factors) which covalently attach ubiquitin, a small and highly conserved protein, to specific internal lysine residues of proteolytic substrates. Ubiquitinated substrates are then degraded by the proteasome, a multisubunit protease complex. Here we show that expression of this ubiquitin-dependent proteolysis pathway in yeast is activated in response to cadmium exposure and that mutants deficient in specific ubiquitin-conjugating enzymes are hypersensitive to cadmium. Moreover, mutants in the proteasome are hypersensitive to cadmium, suggesting that cadmium resistance is mediated in part by degradation of abnormal proteins. This indicates that a major reason for cadmium toxicity may be cadmium-induced formation of abnormal proteins.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Comparative Study
Authors
Jungmann J, Reins HA, Schobert C, Jentsch S
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference