Take our Survey

Reference: Knop M, et al. (1996) N-Glycosylation affects endoplasmic reticulum degradation of a mutated derivative of carboxypeptidase yscY in yeast. Yeast 12(12):1229-38

Reference Help

Abstract


The endoplasmic reticulum (ER) of eukaryotic cells contains a quality control system, that is required for the proteolytic removal of aberrantly folded proteins that accumulate in this organelle. We used genetic and biochemical methods to analyse the involvement of N-glycosylation in the degradation of a mutant derivative of carboxypeptidase yscY in the ER of the yeast Saccharomyces cerevisiae. Our results demonstrate that N-glycosylation of this protein is required for its degradation since an unglycosylated species is retained stably in the ER. Cells that were devoid of the ER-processing alpha 1,2-mannosidase showed reduced degradation of the glycosylated substrate protein. Disruption of CNE1, a gene encoding a putative yeast homologue for calnexin, did not exhibit any effects on the degradation of this substrate protein in vivo. Also, the alpha 1,2-mannosidase-dependent reduction in the degradation rate did not show any correlation with the function of the CNE1 gene product. Our results suggest that the ER of yeast contains a glycosylation-dependent quality control system, as has been shown for higher eukaryotic cells.

Reference Type
Journal Article
Authors
Knop M, Hauser N, Wolf DH
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference