Reference: Crawford MJ, et al. (1995) Regulation of Saccharomyces cerevisiae flavohemoglobin gene expression. J Biol Chem 270(12):6991-6

Reference Help

Abstract


The Saccharomyces cerevisiae hemoglobin is a flavoprotein of unknown function. It shares extensive sequence homology with the globin of Candida as well as those of several bacterial species. We have studied its gene regulation in order to better understand its purpose in the cell. Transcriptional analyses indicate that, in sharp contrast to the bacterial globins of Vitreoscilla and Alcaligenes eutrophus, the S. cerevisiae globin message is induced during logarithmic growth and under oxygen-replete conditions. Transcription of the S. cerevisiae hemoglobin gene is positively regulated by the transcription factors heme-activated protein (HAP) 1 and HAP2/3/4, which respond to intracellular heme levels. Anaerobically, there is a low level, HAP-independent induction of hemoglobin mRNA. Unlike other systems influenced by the HAP2/3/4 transcription factor complex, no activation of hemoglobin expression by growth in non-fermentable carbon sources is observed. Flavohemoglobin gene disruption does not alter cell viability or growth in a variety of oxygen conditions and carbon sources. Physical and genetic mapping of the S. cerevisiae flavohemoglobin gene places it on chromosome seven near the formyltetrahydrofolate synthase (ADE3) locus. These data indicate that, despite the high degree of homology, the S. cerevisiae globin may have a function distinct from those proposed for bacterial globins.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Crawford MJ, Sherman DR, Goldberg DE
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference