Take our Survey

Reference: Launhardt H, et al. (1998) Drug-induced phenotypes provide a tool for the functional analysis of yeast genes. Yeast 14(10):935-42

Reference Help

Abstract

The post-genome sequencing era of Saccharomyces cerevisiae is defined by the analysis of newly discovered open reading frames of unknown function. In this report, we describe a genetic method for the rapid identification and characterisation of genes involved in a given phenotype. This approach is based on the ability of overexpressed genomic DNA fragments to cure an induced phenotype in yeast. To validate this concept, yeast cells carrying a yeast DNA library present on multicopy plasmid vectors were screened for resistance to the antifungal drug ketoconazole. Among 1.2 million colonies 13 clones tested positive, including those expressing the lanosterol C-14 demethylase, known to be a cellular target for azole drugs, and the cytochrome-c oxidase of mitochondria, regulating the respiratory chain electron transport. Several other resistant clones were identified, which code for yeast proteins of so far unknown function. These genes may represent potential candidates for antifungal drug effects. Together with the availability of the entire yeast genome sequence, the described genetic screening method is a powerful tool for the effective functional analysis of yeast genes.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Launhardt H, Hinnen A, Munder T
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference