Take our Survey

Reference: Rundlett SE, et al. (1998) Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3. Nature 392(6678):831-5

Reference Help

Abstract

The histone deacetylase RPD3 can be targeted to certain genes through its interaction with DNA-binding regulatory proteins. RPD3 can then repress gene transcription. In the yeast Saccharomyces cerevisiae, association of RPD3 with the transcriptional repressors SIN3 and UME6 results in repression of reporter genes containing the UME6-binding site. RPD3 can deacetylate all histone H4 acetylation sites in cell extracts. However, it is unknown how H4 proteins located at genes near UME6-binding sites are affected, nor whether the effect of RPD3 is localized to the promoter regions. Here we study the mechanism by which RPD3 represses gene activity by examining the acetylation state of histone proteins at UME6-regulated genes. We used antibodies specific for individual acetylation sites in H4 to immunoprecipitate chromatin fragments. A deletion of RPD3 or SIN3, but not of the related histone-deacetylase gene HDA1, results in increased acetylation of the lysine 5 residue of H4 in the promoters of the UME6-regulated INO1, IME2 and SPO13 genes. As increased acetylation of this residue is not merely a consequence of gene transcription, acetylation of this site may be essential for regulating gene activity.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Rundlett SE, Carmen AA, Suka N, Turner BM, Grunstein M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference