Take our Survey

Reference: Mai B and Breeden L (1997) Xbp1, a stress-induced transcriptional repressor of the Saccharomyces cerevisiae Swi4/Mbp1 family. Mol Cell Biol 17(11):6491-501

Reference Help

Abstract

We have identified Xbp1 (XhoI site-binding protein 1) as a new DNA-binding protein with homology to the DNA-binding domain of the Saccharomyces cerevisiae cell cycle regulating transcription factors Swi4 and Mbp1. The DNA recognition sequence was determined by random oligonucleotide selection and confirmed by gel retardation and footprint analyses. The consensus binding site of Xbp1, GcCTCGA(G/A)G(C/A)g(a/g), is a palindromic sequence, with an XhoI restriction enzyme recognition site at its center. This Xbpl binding site is similar to Swi4/Swi6 and Mbp1/Swi6 binding sites but shows a clear difference from these elements in one of the central core bases. There are binding sites for Xbp1 in the G1 cyclin promoter (CLN1), but they are distinct from the Swi4/Swi6 binding sites in CLN1, and Xbp1 will not bind to Swi4/Swi6 or Mbp1/Swi6 binding sites. The XBP1 promoter contains several stress-regulated elements, and its expression is induced by heat shock, high osmolarity, oxidative stress, DNA damage, and glucose starvation. When fused to the LexA DNA-binding domain, Xbp1 acts as transcriptional repressor, defining it as the first repressor in the Swi4/Mbp1 family and the first potential negative regulator of transcription induced by stress. Overexpression of XBP1 results in a slow-growth phenotype, lengthening of G1, an increase in cell volume, and a repression of G1 cyclin expression. These observations suggest that Xbp1 may contribute to the repression of specific transcripts and cause a transient cell cycle delay under stress conditions.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S. | Comparative Study
Authors
Mai B, Breeden L
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference