Reference: Xu T and Forgac M (2000) Subunit D (Vma8p) of the yeast vacuolar H+-ATPase plays a role in coupling of proton transport and ATP hydrolysis. J Biol Chem 275(29):22075-81

Reference Help

Abstract


To investigate the function of subunit D in the vacuolar H(+)-ATPase (V-ATPase) complex, random and site-directed mutagenesis was performed on the VMA8 gene encoding subunit D in yeast. Mutants were selected for the inability to grow at pH 7.5 but the ability to grow at pH 5.5. Mutations leading to reduced levels of subunit D in whole cell lysates were excluded from the analysis. Seven mutants were isolated that resulted in pH-dependent growth but that contained nearly wild-type levels of subunit D and nearly normal assembly of the V-ATPase as assayed by subunit A levels associated with isolated vacuoles. Each of these mutants contained 2-3 amino acid substitutions and resulted in loss of 60-100% of proton transport and 58-93% of concanamycin-sensitive ATPase activity. To identify the mutations responsible for the observed effects on activity, 14 single amino acid substitutions and 3 double amino acid substitutions were constructed by site-directed mutagenesis and analyzed as described above. Six of the single mutations and all three of the double mutations led to significant (>30%) loss of activity, with the mutations having the greatest effects on activity clustering in the regions Val(71)-Gly(80) and Lys(209)-Met(221). In addition, both M221V and the double mutant V71D/E220V led to significant uncoupling of proton transport and ATPase activity, whereas the double mutant G80D/K209E actually showed increased coupling efficiency. Both a mutant showing reduced coupling and a mutant with only 6% of wild-type proton transport activity showed normal dissociation of the V-ATPase complex in vivo in response to glucose deprivation. These results suggest that subunit D plays an important role in coupling of proton transport and ATP hydrolysis and that only low rates of turnover of the enzyme are required to support in vivo dissociation.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Xu T, Forgac M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference