Take our Survey

Reference: Snay-Hodge CA, et al. (1998) Dbp5p/Rat8p is a yeast nuclear pore-associated DEAD-box protein essential for RNA export. EMBO J 17(9):2663-76

Reference Help

Abstract

To identify Saccharomyces cerevisiae genes important for nucleocytoplasmic export of messenger RNA, we screened mutant strains to identify those in which poly(A)+ RNA accumulated in nuclei under nonpermissive conditions. We describe the identification of DBP5 as the gene defective in the strain carrying the rat8-1 allele (RAT = ribonucleic acid trafficking). Dbp5p/Rat8p, a previously uncharacterized member of the DEAD-box family of proteins, is closely related to eukaryotic initiation factor 4A(eIF4A) an RNA helicase essential for protein synthesis initiation. Analysis of protein databases suggests most eukaryotic genomes encode a DEAD-box protein that is probably a homolog of yeast Dbp5p/Rat8p. Temperature-sensitive alleles of DBP5/RAT8 were prepared. In rat8 mutant strains, cells displayed rapid, synchronous accumulation of poly(A)+ RNA in nuclei when shifted to the non-permissive temperature. Dbp5p/Rat8p is located within the cytoplasm and concentrated in the perinuclear region. Analysis of the distribution of Dbp5p/Rat8p in yeast strains where nuclear pore complexes are tightly clustered indicated that a fraction of this protein associates with nuclear pore complexes (NPCs). The strong mutant phenotype, association of the protein with NPCs and genetic interaction with factors involved in RNA export provide strong evidence that Dbp5p/Rat8p plays a direct role in RNA export.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Snay-Hodge CA, Colot HV, Goldstein AL, Cole CN
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference