Reference: McNeil JB, et al. (1998) Activated transcription independent of the RNA polymerase II holoenzyme in budding yeast. Genes Dev 12(16):2510-21

Reference Help

Abstract


We investigated whether the multisubunit holoenzyme complex of RNA polymerase II (Pol II) and mediator is universally required for transcription in budding yeast. DeltaCTD Pol II lacking the carboxy-terminal domain of the large subunit cannot assemble with mediator but can still transcribe the CUP1 gene. CUP1 transcripts made by DeltaCTD Pol II initiated correctly and some extended past the normal poly(A) site yielding a novel dicistronic mRNA. Most CUP1 transcripts made by DeltaCTD Pol II were degraded but could be stabilized by deletion of the XRN1 gene. Unlike other genes, transcription of CUP1 and HSP82 also persisted after inactivation of the CTD kinase Kin28 or the mediator subunit Srb4. The upstream-activating sequence (UAS) of the CUP1 promoter was sufficient to drive Cu2+ inducible transcription without Srb4 and heat shock inducible transcription without the CTD. We conclude that the Pol II holoenzyme is not essential for all UAS-dependent activated transcription in yeast.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
McNeil JB, Agah H, Bentley D
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference