Reference: Vida TA, et al. (1993) Yeast vacuolar proenzymes are sorted in the late Golgi complex and transported to the vacuole via a prevacuolar endosome-like compartment. J Cell Biol 121(6):1245-56

Reference Help

Abstract


We are studying intercompartmental protein transport to the yeast lysosome-like vacuole with a reconstitution assay using permeabilized spheroplasts that measures, in an ATP and cytosol dependent reaction, vacuolar delivery and proteolytic maturation of the Golgi-modified precursor forms of vacuolar hydrolases like carboxypeptidase Y (CPY). To identify the potential donor compartment in this assay, we used subcellular fractionation procedures that have uncovered a novel membrane-enclosed prevacuolar transport intermediate. Differential centrifugation was used to separate permeabilized spheroplasts into 15K and 150K g membrane pellets. Centrifugation of these pellets to equilibrium on sucrose density gradients separated vacuolar and Golgi complex marker enzymes into light and dense fractions, respectively. When the Golgi-modified precursor form of CPY (p2CPY) was examined (after a 5-min pulse, 30-s chase), as much as 30-40% fractionated with an intermediate density between both the vacuole and the Golgi complex. Pulse-chase labeling and fractionation of membranes indicated that p2CPY in this gradient region had already passed through the Golgi complex, which kinetically ordered it between the Golgi and the vacuole. A mutant CPY protein that lacks a functional vacuolar sorting signal was detected in Golgi fractions but not in the intermediate compartment indicating that this corresponds to a post-sorting compartment. Based on the low transport efficiency of the mutant CPY protein in vitro (decreased by sevenfold), this intermediate organelle most likely represents the donor compartment in our reconstitution assay. This organelle is not likely to be a transport vesicle intermediate because EM analysis indicates enrichment of 250-400 nm compartments and internalization of surface-bound 35S-alpha-factor at 15 degrees C resulted in its apparent cofractionation with wild-type p2CPY, indicating an endosome-like compartment (Singer, B., and H. Reizman. 1990. J. Cell Biol. 110:1911-1922). Fractionation of p2CPY accumulated in the temperature sensitive vps15 mutant revealed that the vps15 transport block did not occur in the endosome-like compartment but rather in the late Golgi complex, presumably the site of CPY sorting. Therefore, as seen in mammalian cells, yeast CPY is sorted away from secretory proteins in the late Golgi and transits to the vacuole via a distinct endosome-like intermediate.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Vida TA, Huyer G, Emr SD
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference