Reference: Le Y and Dobson MJ (1997) Stabilization of yeast artificial chromosome clones in a rad54-3 recombination-deficient host strain. Nucleic Acids Res 25(6):1248-53

Reference Help

Abstract


The cloning and propagation of large fragments of DNA on yeast artificial chromosomes (YACs) has become a routine and valuable technique in genome analysis. Unfortunately, many YAC clones have been found to undergo rearrangements or deletions during the cloning process. The frequency of transformation-associated alterations and mitotic instability can be reduced in a homologous recombination-deficient yeast host strain such as a rad52 mutant. RAD52 is one member of an epistatic group of genes required for the recombinational repair of double-strand breaks in DNA. rad52 mutants grow more slowly and transform less efficiently than RAD + strains and are therefore not ideal hosts for YAC library construction. We have investigated the ability of both null and temperature-sensitive alleles of RAD54 , another member of the RAD52 epistasis group, to prevent rearrangements of human YAC clones containing tandemly repeated DNA sequences. Our results show that the temperature-sensitive rad54-3 allele blocks mitotic recombination between tandemly repeated DYZ3 satellite sequences and significantly stabilizes a human DYZ5 satellite-containing YAC clone. Yeast carrying the rad54-3 mutation can undergo meiosis, have growth and transformation rates comparable with RAD + strains, and therefore represent improved YAC cloning hosts.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Le Y, Dobson MJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference