Reference: Braus GH, et al. (1988) The role of the TRP1 gene in yeast tryptophan biosynthesis. J Biol Chem 263(16):7868-75

Reference Help

Abstract


Transcription of the gene for phosphoribosyl-anthranilate isomerase (TRP1) from the TRP1 promoter is initiated only approximately half as frequently as, for example, from the TRP3 promoter, but TRP1 mRNA is approximately twice as stable as TRP3 mRNA. Therefore, the steady state amount of TRP1 mRNA in yeast cells, grown without amino acid limitation, is similar to the steady-state amount of TRP3 mRNA. The protein concentration of both enzymes in yeast cells is about the same, but the basal specific enzyme activity in permeabilized cells of the TRP1 gene product N-(5'-phosphoribosyl-1)-anthranilate isomerase is about 2-3 times higher than that of any of the other TRP enzymes. According to the kinetic parameters of the purified isomerase protein, the enzyme is more active than, for example, the purified TRP3 enzyme indoleglycerol-phosphate synthase. It is suggested that the TRP1 gene of Saccharomyces cerevisiae might be the result of a rearrangement event, separating the N-(5'-phosphoribosyl-1)-anthranilate isomerase domain from the indoleglycerol-phosphate synthase domain and putting the catalytically more active isomerase domain behind a weak and nonregulated constitutive promoter.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Braus GH, Luger K, Paravicini G, Schmidheini T, Kirschner K, Hutter R
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference