Take our Survey

Reference: Ho JH and Johnson AW (1999) NMD3 encodes an essential cytoplasmic protein required for stable 60S ribosomal subunits in Saccharomyces cerevisiae. Mol Cell Biol 19(3):2389-99

Reference Help

Abstract

A mutation in NMD3 was found to be lethal in the absence of XRN1, which encodes the major cytoplasmic exoribonuclease responsible for mRNA turnover. Molecular genetic analysis of NMD3 revealed that it is an essential gene required for stable 60S ribosomal subunits. Cells bearing a temperature-sensitive allele of NMD3 had decreased levels of 60S subunits at the nonpermissive temperature which resulted in the formation of half-mer polysomes. Pulse-chase analysis of rRNA biogenesis indicated that 25S rRNA was made and processed with kinetics similar to wild-type kinetics. However, the mature RNA was rapidly degraded, with a half-life of 4 min. Nmd3p fractionated as a cytoplasmic protein and sedimented in the position of free 60S subunits in sucrose gradients. These results suggest that Nmd3p is a cytoplasmic factor required for a late cytoplasmic assembly step of the 60S subunit but is not a ribosomal protein. Putative orthologs of Nmd3p exist in Drosophila, in nematodes, and in archaebacteria but not in eubacteria. The Nmd3 protein sequence does not contain readily recognizable motifs of known function. However, these proteins all have an amino-terminal domain containing four repeats of Cx2C, reminiscent of zinc-binding proteins, implicated in nucleic acid binding or protein oligomerization.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Ho JH, Johnson AW
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference