Take our Survey

Reference: Rosenheck S and Choder M (1998) Rpb4, a subunit of RNA polymerase II, enables the enzyme to transcribe at temperature extremes in vitro. J Bacteriol 180(23):6187-92

Reference Help

Abstract

Rpb4 is a subunit of Saccharomyces cerevisiae RNA polymerase II (Pol II). It associates with the polymerase preferentially in stationary phase and is essential for some stress responses. Using the promoter-independent initiation and chain elongation assay, we monitored Pol II enzymatic activity in cell extracts. We show here that Rpb4 is required for the polymerase activity at temperature extremes (10 and 35 degreesC). In contrast, at moderate temperature (23 degreesC) Pol II activity is independent of Rpb4. These results are consistent with the role previously attributed to Rpb4 as a subunit whose association with Pol II helps Pol II to transcribe during extreme temperatures. The enzymatic inactivation of Pol II lacking Rpb4 at the nonoptimal temperature was prevented by the addition of recombinant Rpb4 produced in Escherichia coli prior to the in vitro reaction assay. This finding suggests that modification of Rpb4 is not required for its functional association with the other Pol II subunits. Sucrose gradient and immunoprecipitation experiments demonstrated that Rpb4 is present in the cell in excess over the Pol II complex during all growth phases. Nevertheless, the rescue of Pol II activity at the nonoptimal temperature by Rpb4 is possible only when cell extracts are obtained from postlogarithmic cells, not from logarithmically growing cells. This result suggests that Pol II molecules should be modified in order to recruit Rpb4; the portion of the modified Pol II molecules is small during logarithmic phase and becomes predominant in stationary phase.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Rosenheck S, Choder M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference