Take our Survey

Reference: Danielsson A, et al. (1996) A genetic analysis of the role of calcineurin and calmodulin in Ca++-dependent improvement of NaCl tolerance of Saccharomyces cerevisiae. Curr Genet 30(6):476-84

Reference Help

Abstract

Mutants of Saccharomyces cerevisiae lacking activity of the Ca2+/calmodulin-dependent protein phosphatase calcineurin, show sensitivity to high concentrations of sodium that is partly reversed by the external supply of Ca2+. On long-time exposure to NaCl stress the mutants display an increased intracellular Na+/K+ ratio which is partially corrected by the addition of Ca2+, improving the sodium efflux of not only calcineurin-defective cells but also wild-type cells. We also demonstrate that the NaCl sensitivity of cmd mutants, expressing modified forms of calmodulin that do not bind Ca2+, is strongly reversed by the addition of Ca2+. This effect is highly dependent on calcineurin, since the NaCl tolerance of a cmd1-3 strain, carrying an additional mutation in calcineurin, is only slightly assisted by Ca2+. A striking characteristic of the loss of function of calcineurin is a several-fold increased content of intracellular Ca2+, localized mainly in subcellular compartment(s). If the compartmentalized Ca2+ pool is brought back to normal levels by an additional inactivating mutation of the vacuolar Ca2+-transporting ATPase, such double mutants do not significantly improve their tolerance to NaCl.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Danielsson A, Larsson C, Larsson K, Gustafsson L, Adler L
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference