Reference: Casamayor A, et al. (1999) Functional counterparts of mammalian protein kinases PDK1 and SGK in budding yeast. Curr Biol 9(4):186-97

Reference Help

Abstract


BACKGROUND: In animal cells, recruitment of phosphatidylinositol 3-kinase by growth factor receptors generates 3-phosphoinositides, which stimulate 3-phosphoinositide-dependent protein kinase-1 (PDK1). Activated PDK1 then phosphorylates and activates downstream protein kinases, including protein kinase B (PKB)/c-Akt, p70 S6 kinase, PKC isoforms, and serum- and glucocorticoid-inducible kinase (SGK), thereby eliciting physiological responses. RESULTS: We found that two previously uncharacterised genes of Saccharomyces cerevisiae, which we term PKH1 and PKH2, encode protein kinases with catalytic domains closely resembling those of human and Drosophila PDK1. Both Pkh1 and Pkh2 were essential for cell viability. Expression of human PDK1 in otherwise inviable pkh1Delta pkh2Delta cells permitted growth. In addition, the yeast YPK1 and YKR2 genes were found to encode protein kinases each with a catalytic domain closely resembling that of SGK; both Ypk1 and Ykr2 were also essential for viability. Otherwise inviable ypk1Delta ykr2Delta cells were fully rescued by expression of rat SGK, but not mouse PKB or rat p70 S6 kinase. Purified Pkh1 activated mammalian SGK and PKBalpha in vitro by phosphorylating the same residue as PDK1. Pkh1 activated purified Ypk1 by phosphorylating the equivalent residue (Thr504) and was required for maximal Ypk1 phosphorylation in vivo. Unlike PKB, activation of Ypk1 and SGK by Pkh1 did not require phosphatidylinositol 3,4,5-trisphosphate, consistent with the absence of pleckstrin homology domains in these proteins. The phosphorylation consensus sequence for Ypk1 was similar to that for PKBalpha and SGK. CONCLUSIONS: Pkh1 and Pkh2 function similarly to PDK1, and Ypk1 and Ykr2 to SGK. As in animal cells, these two groups of yeast kinases constitute two tiers of a signalling cascade required for yeast cell growth.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Casamayor A, Torrance PD, Kobayashi T, Thorner J, Alessi DR
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference