Reference: McGraw P and Tzagoloff A (1983) Assembly of the mitochondrial membrane system. Characterization of a yeast nuclear gene involved in the processing of the cytochrome b pre-mRNA. J Biol Chem 258(15):9459-68

Reference Help

Abstract


The cytochrome b gene of Saccharomyces cerevisiae D273-10B was previously shown to be composed of three exons and two introns (Nobrega, F.G., and Tzagoloff, A. (1980) J. Biol. Chem. 255, 9828-9837). In the present study nuclear respiratory deficient mutants of this strain have been screened for defects in processing of the cytochrome b pre-mRNA. Fifteen independently isolated mutants lacking cytochrome b have been assigned to a single genetic complementation group (G36). Members of this complementation group are blocked in the excision of the second intervening sequence of cytochrome b and consequently are unable to produce the mature mRNA. The wild type gene defined by this class of mutants has been named CBP2. A recombinant plasmid with the CBP2 gene has been selected from a library of wild type nuclear DNA and further subcloned by transformation of a cbp2 mutant to respiratory competency. The smallest plasmid (pG36/T5) capable of complementing cbp2 mutants and of restoring their ability to complete processing of the cytochrome b pre-mRNA has a nuclear DNA fragment of 2.6 kilobase pairs inserted at the BamHI site of the yeast vector YEp13. The sequence of the cloned DNA fragment has revealed an 1890-nucleotide-long reading frame encoding a basic protein with a molecular weight of 74,000. Deletion analysis confirms that the entire reading frame is required for complementation of cbp2 mutants. This reading frame is proposed to code for the CBP2 gene product.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
McGraw P, Tzagoloff A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference