Reference: Anthony RA and Liebman SW (1995) Alterations in ribosomal protein RPS28 can diversely affect translational accuracy in Saccharomyces cerevisiae. Genetics 140(4):1247-58

Reference Help

Abstract


Three small-subunit ribosomal proteins shown to influence translational accuracy in Saccharomyces cerevisiae are conserved in structure and function with their procaryotic counterparts. One of these, encoded by RPS28A and RPS28B (RPS28), is comparable to bacterial S12. The others, encoded by sup44 (RPS4) or, sup46 and YS11A (RPS13), are homologues of procaryotic S5 and S4, respectively. In Escherichia coli, certain alterations in S12 cause hyperaccurate translation or antibiotic resistance that can be counteracted by other changes in S5 or S4 that reduce translational accuracy. Using site-directed and random mutagenesis, we show that different changes in RPS28 can have diametrical influences on translational accuracy or antibiotic sensitivity in yeast. Certain substitutions in the amino-terminal portion of the protein, which is diverged from the procaryotic homologues, cause varying levels of nonsense suppression or antibiotic sensitivity. Other alterations, found in the more conserved carboxyl-terminal portion, counteract SUP44- or SUP46-associated antibiotic sensitivity, mimicking E. coli results. Although mutations in these different parts of RPS28 have opposite affects on translational accuracy or antibiotic sensitivity, additive phenotypes can be observed when opposing mutations are combined in the same protein.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Comparative Study
Authors
Anthony RA, Liebman SW
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference