Reference: Correa García S, et al. (1997) Carbon and nitrogen sources regulate delta-aminolevulinic acid and gamma-aminobutyric acid transport in Saccharomyces cerevisiae. Int J Biochem Cell Biol 29(8-9):1097-101

Reference Help

Abstract


Evidence has been obtained showing that transport of delta-aminolevulinic acid (ALA), a precursor of porphyrin biosynthesis in Saccharomyces cerevisiae, is mediated by the gamma-aminobutyric acid (GABA)-specific permease, UGA4. In yeast GABA is also incorporated by the general amino acid permease (GAP1) and the specific proline permease (PUT4). The aim of the present work was to carry out a comparative study on the regulation of ALA and GABA transport to confirm our proposal that both compounds share the UGA4 permease. ALA and GABA uptake were measured in cells grown on minimal media with different carbon and/or nitrogen sources. To study the effect of the carbon source on UGA4 permease, ALA and GABA incorporation were measured in D27 strain, lacking GAP1 permease, and grown in proline as the sole nitrogen source, so the activity of PUT4 permease was negligible. The effect of the nitrogen source on UGA4 permease was studied measuring ALA and GABA uptake rates in cells from media with ammonium, proline and urea as nitrogen sources. It was found that the regulation by the carbon source was similar on ALA and GABA transport; they depend equally on the energetic conditions of the cells. Moreover, regulation by the nitrogen source on ALA and GABA uptake was also similar, and identical to that described already for UGA4 permease. These results are further evidence that both compounds, ALA and GABA, share the GABA-specific permease, UGA4.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Correa García S, Bermúdez Moretti M, Ramos E, Batlle A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference