Reference: Yin Z, et al. (1996) Multiple signalling pathways trigger the exquisite sensitivity of yeast gluconeogenic mRNAs to glucose. Mol Microbiol 20(4):751-64

Reference Help

Abstract


The transcription of the yeast FBP1 and PCK1 genes, which encode the gluconeogenic enzymes fructose-1,6-bisphosphatase and phosphoenolpyruvate carboxykinase, is repressed by glucose. Here, we show that this repression is both very strong and exceptionally sensitive to glucose, being triggered by glucose at concentrations less than 0.005% (0.27 mM). This repression remains operative in yeast mutants carrying any one of the three hexose kinases, but is lost in a triple hxk1, hxk2, glk1 mutant. In addition, 2-deoxyglucose can trigger the repression, but 6-deoxyglucose cannot, suggesting that internalization and phosphorylation of the glucose is essential for repression to occur. While gluconeogenic gene transcription is subject to the Mig 1p-dependent pathway of glucose repression, the exquisite response to glucose is maintained in hxk2 and mig1 mutants, suggesting that this pathway is not essential for the response. The response can also be triggered by the addition of exogenous cAMP, suggesting that the Ras/cAMP pathway can mediate repression of the FPB1 and PCK1 mRNAs. However, the response is not dependent upon this pathway because it remains intact in Ras, adenyl cyclase and protein kinase A mutants. The data show that yeast cells can detect very low glucose concentrations in the environment, and suggest that several distinct signalling pathways operate to repress FPB1 and PCK1 transcription in the presence of glucose.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Yin Z, Smith RJ, Brown AJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference