Reference: Soteropoulos P and Perlin DS (1998) Genetic probing of the stalk segments associated with M2 and M3 of the plasma membrane H+-ATPase from Saccharomyces cerevisiae. J Biol Chem 273(41):26426-31

Reference Help

Abstract


The stalk region of the H+-ATPase from Saccharomyces cerevisiae has been proposed to play a role in coupling ATP hydrolysis to proton transport. Genetic probing was used to examine the role of stalk segments S2 and S3, associated with M2 and M3, respectively. Saturation mutagenesis was used to explore the role of side group character at position Ile183 in S2, at which an alanine substitution was shown previously to partially uncouple the enzyme (Wang, G., Tamas, M. J., Hall, M. J., Pascual-Ahuir, A., and Perlin, D. S. (1996) J. Biol. Chem. 271, 25438-25445). Diverse side group substitutions were tolerated at this position, although three substitutions, I183N, I183R, and I183Y required second site mutations at the C terminus of the enzyme for stabilization. Substitution of glycine and proline at Ile183 resulted in lethal phenotypes, suggesting that the backbone may be more important than side group at this position. Proline/glycine mutagenesis was used to study additional sites in S2 and S3. The substitution of proline at Gly186 resulted in a lethal phenotype, whereas substitutions in S3 of proline or serine at Gly270 and proline or glycine at Thr287 resulted in viable mutants. Mutations G270P and T287P resulted in mutant enzymes that produced pronounced growth defects and ATP hydrolysis rates that were 35% and 60% lower than wild type enzyme, respectively. The mutant enzymes transported protons at rates consistent with their ATPase activity, suggesting that the growth defects observed were due to a reduced rate of ATP hydrolysis and not to uncoupling of proton transport. The prominent growth phenotypes produced by mutations G270P and T287P permitted the isolation of suppressor mutations, which restored wild type growth. Most of the suppressors either replaced the primary site mutation with alanine or restored the wild type residue by ectopic recombination with PMA2, both of which restore alpha-helical tendency. This study suggests that maintaining alpha-helical character is essential to S2 and may play an important role in S3.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Soteropoulos P, Perlin DS
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference