Reference: Schneiter R, et al. (2000) Elo1p-dependent carboxy-terminal elongation of C14:1Delta(9) to C16:1Delta(11) fatty acids in Saccharomyces cerevisiae. J Bacteriol 182(13):3655-60

Reference Help

Abstract


Saccharomyces cerevisiae medium-chain acyl elongase (ELO1) mutants have previously been isolated in screens for fatty acid synthetase (FAS) mutants that fail to grow on myristic acid (C14:0)-supplemented media. Here we report that wild-type cells cultivated in myristoleic acid (C14:1Delta(9))-supplemented media synthesized a novel unsaturated fatty acid that was identified as C16:1Delta(11) fatty acid by gas chromatography-mass spectroscopy. Synthesis of C16:1Delta(11) was dependent on a functional ELO1 gene, indicating that Elo1p catalyzes carboxy-terminal elongation of unsaturated fatty acids (alpha-elongation). In wild-type cells, the C16:1Delta(11) elongation product accounted for approximately 12% of the total fatty acids. This increased to 18% in cells that lacked a functional acyl chain desaturase (ole1Delta mutants) and hence were fully dependent on uptake and elongation of C14:1. The observation that ole1Delta mutant cells grew almost like wild type on medium supplemented with C14:1 indicated that uptake and elongation of unsaturated fatty acids were efficient. Interestingly, wild-type cells supplemented with either C14:1 or C16:1 fatty acids displayed dramatic alterations in their phospholipid composition, suggesting that the availability of acyl chains is a dominant determinant of the phospholipid class composition of cellular membranes. In particular, the relative content of the two major phospholipid classes, phosphatidylethanolamine and phosphatidylcholine, was strongly dependent on the chain length of the supplemented fatty acid. Moreover, analysis of the acyl chain composition of individual phospholipid classes in cells supplemented with C14:1 revealed that the relative degree of acyl chain saturation characteristic for each phospholipid class appeared to be conserved, despite the gross alteration in the cellular acyl chain pool. Comparison of the distribution of fatty acids that were taken up and elongated (C16:1Delta(11)) to those that were endogenously synthesized by fatty acid synthetase and then desaturated by Ole1p (C16:1Delta(9)) in individual phospholipid classes finally suggested the presence of two different pools of diacylglycerol species. These results will be discussed in terms of biosynthesis of different phospholipid classes via either the de novo or the Kennedy pathway.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Schneiter R, Tatzer V, Gogg G, Leitner E, Kohlwein SD
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference